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The goal of this work is to develop a computational framework to rapidly simulate the
light scattering response of multiple red blood cells. Because the wavelength of visible
light (3.8X10""m<2A<7.2X10""m) is approximately an order of magnitude smaller
than the diameter of a typical red blood cell scatterer (dz8><10_6 m), geometric ray-
tracing theory is applicable, and can be used to quickly ascertain the amount of optical
energy, characterized by the Poynting vector, that is reflected and absorbed by
multiple red blood cells. The overall objective is to provide a straightforward approach
that can be easily implemented by researchers in the field, using standard desktop
computers. Three-dimensional examples are given to illustrate the approach and the
results compare quite closely to experiments on blood samples conducted at the
Children’s Hospital Oakland Research Institute (CHORI).
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1. INTRODUCTION

Erythrocytes or red blood cells (RBCs) are the most
numerous type of cells in human blood, and are
responsible for the transport of oxygen and carbon
dioxide. Typically, for healthy human beings, at a
standard altitude, females average about 4.8 million of
these cells per cubic millimetre of blood, while males
average about 5.4 million per cubic millimetre. The
lifespan of RBCs is approximately 120 days. Thereafter,
they are ingested by phagocytic cells in the liver and
spleen (approx. three million RBCs die and are scavenged
each second), and the iron in their hemoglobin (which
gives them their characteristic dark colour) is reclaimed
for reuse. The remainder of the heme portion of the
molecule is degraded into bile pigments and excreted by
the liver. The typical bi-concaval shape of RBC is the
optimal combination of surface area to volume ratio. This
shape also provides unique deformability characteristics
to the cell, giving it advantageous properties in order to
perform its function in small capillaries. Deviation from
the usual healthy cell morphology can lead to a loss of
normal function and reduced RBC survival. Hence,
measurement of RBC shape is an important parameter
to describe RBC function.

A significant part of determining the characteristics of
RBC is achieved via optical measurements. Ideally, one
would like to perform numerical simulations, in order to
minimize time-consuming laboratory tests. Accordingly,
the objective of this work is to develop a simple approach
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to ascertain the light scattering response of large numbers
of randomly distributed and oriented red blood cells.
Due to the fact that the diameter of a typical red blood
cell is on the order of 8 um (d=8X 10~ °%m), which is
much larger than the wavelengths of visible light
(3.8X10”"m<A<7.2X107 " m), geometric ray-tracing
can be used to determine the amount of propagating
optical energy, characterized by the Poynting vector,
that is reflected and absorbed by multiple RBCs."
Ray-tracing is highly amenable to rapid large-scale
computation needed to track the scattering of incident
light beams, comprised of multiple rays, by multiple
cells (figure 1), thus making it an ideal simulation
paradigm.

The specific model problem that we consider is an
initially coherent beam (figure 1), composed of multiple
co-linear rays, where each ray is a vector in the
direction of the flow of electromagnetic (optical)
energy, which, in isotropic media, corresponds to the
normal to the wave front. Thus, for isotropic media, the
rays are parallel to the wave’s propagation vector
(figure 1). Of particular interest is to describe the
break-up of initially highly directional coherent beams,
for example lasers, which do not spread out into
multidirectional rays unless they encounter multiple
scatterers. The overall objective of the work is to
provide a straightforward approach that can be
implemented by researchers in the field, using standard
desktop computers.

!See Bohren & Huffman (1998), Elmore & Heald (1985) and van de
Hulst (1981).

© 2006 The Royal Society
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Figure 1. (a) The scattering system considered, comprised of a beam, comprised of multiple rays, incident on a collection of
randomly distributed RBCs. (b) A typical RBC.

2. PARAMETRIZATION OF CELL
CONFIGURATIONS

One of the most widely cited bi-concaval represen-
tations for RBC’s (figure 1) is (Evans & Fung 1972)

et <2(Z—Zo))2 _ <1 _(e—m)* + (Z/—yo)2)

b b?
X<%+q<u—%f;w—%f>
+C?(<x—xo>2 + <y—yo)2)2>2 o

(2.1)

The outward surface normals, n, needed later during
the scattering calculations, are easy to characterize by
computing n=VF/||VF]||. The orientation of the cells,
usually random, can be controlled, via standard
rotational coordinate transformations, with random
angles (figure 1).

The classical random sequential addition algorithm
(Widom 1966) is used to place non-overlapping cells
randomly into the domain of interest. This algorithm is
adequate for the volume fraction range of interest.
However, if higher volume fractions are desired, more
sophisticated algorithms, such as the equilibrium-based
Metropolis algorithm can be used. See Torquato (2002)
for a detailed review of such methods. Furthermore, for
much higher volume fractions, effectively packing (and
‘jamming’) particles to theoretical limits, a new novel
class of methods, based on simultaneous particle flow
and growth, has been developed by Torquato and
coworkers (see, for example, Kansaal et al. (2002) and
Donev et al. (2004, 2005a,b)).

3. PLANE HARMONIC ELECTROMAGNETIC
WAVES

Recall that, in free space, the propagation of light can
be described via an electromagnetic formalism, Maxwell’s
equations, presented here in simplified form

0H

=g
and
V-H=0 and V-E =0, (3.2)

where F is the electric field intensity, H is the magnetic
flux intensity, €, is the permittivity and where u is the
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permeability. Using standard vector identities, one can
show that

0’E
VX(VXE) = THofo g
i*H
and that
1 °E 1 °H
2 2 —
V°E = ?—at2 and V°H = ? at2 5 (34)

where the speed of light is ¢=1/,/€yuy. Now consider
the case of plane harmonic waves, for example of the
form

E = E cos(k-r—wt),

H = H cos(k-r—wt), (3.5)

where 7 is an initial position vector to the wave front
and the wavenumber k is their direction of propa-
gation. For plane waves, k-r=constant. We refer to
the phase as ¢ =k-r—wt, and w=2m/7 as the angular
frequency, where 7 is the period. For ‘plane waves’, the
wave front is a plane on which ¢ is constant, which is
orthogonal to the direction of propagation, charac-
terized by k. In the case of harmonic waves, we have

EXE=pwH and kXH=-—¢wkE, (3.6)

and k- E=0 and k- H=0. The three vectors, k, E and
H constitute a mutually orthogonal triad. The direc-
tion of ray propagation is given by EXH/|EXH||.
Since the free space propagation velocity is given by
c=1/\/€uy for an electromagnetic wave in a vacuum
and v=1/,/eu for electromagnetic waves in another
medium, we can define the index of refraction as’

(3.7)

3.1. Optical energy propagation

Light waves travelling through space carry electro-
magnetic (optical) energy, which flows in the direction
of wave propagation. The energy per unit area per unit
time flowing perpendicularly into a surface in free space

2All electromagnetic radiation travels at the speed of light in a
vacuum, ¢=3X10°ms™'. A more precise value, given by the
National Bureau of Standards, is ¢=2.997924562X10°+1.1ms™ ",
For visible light, 3.8X10™ " m<A<7.2X10" " m.



RBC cell scattering T. 1. Zohdi and F. A. Kuypers 825

is given by the Poynting vector S=EX H. Since at
optical frequencies E, H and S oscillate rapidly, it is
impractical to measure instantaneous values of S
directly. Now consider the harmonic representations
in equation (3.5) which leads to

S = Ey X H, cos’ (k- —wt), (3.8)

and consequently the average value over a longer time
interval than the time scale of rapid random oscillation,

1
<S>T = ‘EO X H0<C032(k"r_(1)t)>7 = EEO X Ho.
(3.9)

We define the irradiance as

12181y = 311 % Holl = 5 [ B, (310)
Mo

Thus, the rate of flow of energy is proportional to the
square of the amplitude of the electric field. Further-
more, in isotropic media, which we consider for the
duration of the work, the direction of energy is in the
direction of S and in the same direction as k. Since [ is
the energy per unit area per unit time, if we multiply by
the ‘cross-sectional” area of the ray (a,), we obtain the
energy associated with the ray, denoted as la, = Iay,/ N;,
where a;, is the cross-sectional area of a beam
(comprising all of the rays) and N is the number of
rays in the beam (figure 1).

3.2. Reflection and absorption of energy

One appeal of geometrical optics is that elementary
concepts are employed. For example, the law of
reflection describes how light is reflected from smooth
surfaces (figure 2). The angle between the point of
contact of a ray and the outward normal to the surface
at that point is the angle of incidence (6;). The law of
reflection states that the angle at which the light is
reflected is the same as the angle of incidence and that
the incoming (incident) and outgoing (reflected, 6,)
rays lay in the same plane and 6;=460,. The law of
refraction states that, if the ray passes from one
medium into a second one (with a different index of
refraction), and, if the index of refraction of the second
medium is less than that of the first, the angle the ray
makes with the normal to the interface is always less
than the angle of incidence, and can be can be written as
(the law of refraction)

sin 6,

= 3.11
sin 6, ’ (3.11)

def UVyac

n
Umed

where 6, is the angle of the transmitted ray (figure 2).

We consider a plane harmonic wave incident upon a
plane tangent to the boundary separating two optically
different materials, which produces a reflected wave
and a transmitted (refracted) wave (figure 2). The
amount of incident electromagnetic energy () that is
reflected (1) is given by the total reflectance

difIr
_77

1

R (3.12)
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normal reflected ray

incident ray o D transmitted
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Figure 2. The nomenclature for Fresnel’s equations for a
incident ray that encounters a scattering cell.

where 0<R<1 and where, for unpolarized (natural)
light (see appendix A),

1 (((ﬁ2/ﬂ)cos 0, — (n? —sin201)1/2>2

2\ \ (A?/@)cos 6; + (7% —sin26,)"/?
2

4 [ cos 6; — (7? —sin’6,)'/?)
cos b, + (1) (% —sim2g,) %) ) )7 (313)
where 7 is the ratio of the refractive indices of the
ambient (incident) medium (7;) and transmitted cell
medium (n), = ny/n;, where fi is the ratio of the
magnetic permeabilities of the surrounding incident
medium (u;) and transmitted cell medium (uy),

fi= e/

For most materials, the magnetic permeability is,
within experimental measurements, virtually the

same.® For the remainder of the work, we shall take
a=1,1e. wo=p= ps.

Remark. Henceforth, we assume that the medium
surrounding the cells behaves as a vacuum, thus,
there are no energetic losses as the electromagnetic
rays pass through it. Furthermore, we assume that all
electromagnetic energy that is absorbed by a cell
becomes trapped, and is not re-emitted. This assump-
tion is discussed further later.

4. COMPUTATIONAL ALGORITHM

The primary quantity of interest is the behaviour of the
propagation of the optical energy, characterized by the
irradiance. For example, consider the following metrics
for overall irradiance of the beam:

dfl N,
Iz =— Si'eu
Io ;

where N, is the number of rays comprising the beam
and where Iy=|(0)| is the magnitude of the initial
irradiance at time t=0. The computational algorithm is

(4.1)

3A few notable exceptions are concentrated magnetite, pyrrhotite,
and titanomagnetite (Telford et al. (1990) and Nye (1957)).
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Figure 3. Starting from left to right and top to bottom, the progressive movement of rays (1000) comprising a beam (7= 1.075).
The lengths of the vectors indicate the irradiance. The shape of the (8000 cells) scatterers (given by equation (2.1)).

as follows, starting at t=0 and ending at t=T"

(1) COMPUTE RAY REFLECTIONS
(FRESNEL RELATIONS),

(2) COMPUTE ABSORPTION BY CELLS,

(3) INCREMENT ALL RAY POSITIONS:

(4) GO TO (1) AND REPEAT WITH
(t=t+At).

(4.2)

Remark 1. The time step size At is dictated by the size
of the cells. A somewhat ad-hoc approach is to scale the
time step size according to Ato«c£b/||v||, where b is the
radius of the cells, ||v|| is the magnitude of the velocity
of the rays and £ is a scaling factor, typically
0.056<£<0.1.

Remark 2. For step (1), it is convenient to determine
whether a ray has just entered a cell domain by
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checking if F(Z,3,2) <0, where (%,7,Z) are the coordi-
nates of the cell expressed in a rotated frame that is
aligned with the axes of symmetry of the cell and then
to compute the normal n=VF/||VF]| in that frame.

5. A COMPUTATIONAL EXAMPLE
5.1. System parameters

We considered groups of randomly dispersed equal-
sized cells, increasing in number, N.= 1000, 2000, 4000
and 8000, in a rectangular domain of dimensions
(figure 3), 1 mm X1 mmX1 cm. This corresponds to a
section of a standard testing device, described in detail
in §5.2. The stated number of cells corresponded to
standard testing hematocrit values. The cells’ major
diameter was the nominal value of d=8X10~%m. A
commonly used set of geometric parameters for the cell
in equation (2.1) are given by Evans & Fung (1972) as
¢p=0.207161, ¢;=2.002558 and c;=—1.122762. The
beam was of circular cross-section with diameter of
0.79375 mm (1/32 of an inch, which falls in the range of
beams used in experiments described later). The
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irradiance (Poynting vector magnitude) beam par-
ameter was set to I=IyN—m/(m>—sec), where the
irradiance for each ray was calculated as Iya,/ N;, where
a, was the cross-sectional area of the beam.* We used
successively higher ray densities, N, =200, 400, 600, 800
and 1000, etc. rays (figure 3), to represent the beam.
The simulations were run until the rays completely
exited the domain, which corresponded to a time-scale
on the order of (10~ m) /¢, where cis the speed of light.
The initial velocity vector for all of the initially
co-linear rays comprising the beam was v=(¢,0,0).

5.2. Computational results

The ratio of the refractive indices 7 varies around 1.0.
The exact value corresponds to the state of the cell,
including membrane characteristics and haemoglobin
concentration. We chose a ratio of refractive indices of
n=(1.4/1.3) =1.075, which is consistent with values
commonly found in the literature. As the plots in
figure 4 indicates, the total amount of energy that is
forwardly scattered (defined as the components Poynt-
ing ray vectors in the positive a-direction) for 7= 1.075
decreases with the number of cells (scatterers).” A
sequence of frames of the typical ray motion is provided
in figure 3. Table 1 tabulates the transmitted energy
for various numbers of cells present. It is important
to emphasize that these calculations were performed
within o few minutes on a single standard (DELL
Precision) laptop.

Remark. Computational tests with higher ray res-
olution were also performed. We increased the ray
density up to 10 000 rays (starting from 200 rays), but
found negligible change with respect to the 1000 ray
resolution simulation. Thus, beyond N,=1000 rays,
the computational results changed negligibly, and can
be considered to have converged. This cell/ray system
provided stable results, i.e. increasing the number of
rays and/or the number of cells surrounding the beam
resulted in negligibly different overall system
responses. Of course, there can be cases where much
higher resolution may be absolutely necessary. Thus, it
is important to note that a straightforward, natural,
algorithmic parallelism is possible with this compu-
tational technique. This can be achieved in two
possible ways: (i) by assigning each processor its
share of the rays, and checking which cells make
contact with those rays or (ii) by assigning each
processor its share of cells, and checking which rays
make contact with those cells.

5.3. Laboratory experiments
5.8.1. Preparation of human and murine erythrocytes
(RBC). Blood samples from healthy donors were

“Because of the normalized structure of the metric, it is insensitive to the
magnitude of I, for the scattering calculations. The initial magnitude of
the Poynting vector magnitude is ||1(0)[| = \/ L,(0)2 + 1,(0)2 + L(0)%,
where, initially, only one component is nonzero, [(0)=1, in the z
direction.

°The system at time ¢= T indicated that all rays have exited the
scattering system.
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Figure 4. Computational results for the propagation of the
forward scatter of I,(¢)/||1(0)|| for increasingly larger number
of cells in the sample.

Table 1. Computational results for the forward scatter of

L{T)/IHO)]].

cells L)/ 1(0)]]
1000 0.97501
2000 0.92201
4000 0.87046
8000 0.76656

collected in EDTA anticoagulant, after informed
consent, at the Children’s Hospital Oakland Research
Institute. Whole blood was kept at 4 °C and used within
24 h. RBC were isolated by centrifugation, washed
three times in HEPES-buffered saline and the buffy coat
was removed after each wash. RBC were re-suspended
at 30% haematocrit in HEPES buffered saline (150 mM
NaCl, 10 mM HEPES, pH 7.4) and stored at 4 °C until
used within 48 h. Before use, cells were suspended in
buffer at room temperature to a cell concentration as
indicated. The exact cell count in the suspension was
determined using the Guava Easycount flowcytometer
(Guava Technologies, Hayward, CA).

5.3.2. Light scatter measurements. 1.5ml of cell
suspension containing the indicated cell concentration
in a cuvet with a 1 cm light path was put in a Varian
50 Cary Bio spectrophotometer (Varian Analytical
Instruments, Palo Alto, CA). Light transmittance
(T=1,/||I(0)|]), defined as the ratio of intensity of
detected light (I,) relative to incoming light (||Z(0)]|)
of cell suspensions relative to buffer without cells was
recorded and averaged over a 1 min interval.
Wavelengths were varied from 200 to 800nm as
indicated and specific measurements were performed
at 420 and 710 nm, wavelengths of maximum and
minimum light absorbance, respectively. In addition,
the intensity of the incoming beam was restricted to
approximately 1% of the original intensity by a
neutral filter.
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5.4. Comparison between computational
predictions and experimental results

In the range of cell concentrations tested, the compu-
tational predictions and laboratory results are in close
agreement, as indicated in figure 5 and tables 1-3.
Although the computations corresponded closely to
both wavelengths of light, the match is closer to the
710 nm wavelength, since that wavelength reflects in a
manner more consistent with the ratio of refractive
indices used in the computations, as opposed to the
420 nm wavelength light which is nearly a purely
absorbing combination with RBC.

Remark 1. Figure 5 shows the relative light transmit-
tance T as a function of the number of cells per millilitre
for different wavelengths of light. Whereas the incoming
light (1(0)) was greatly affected by placing masks with
different circular cross-sections in the light path, the
transmittance T'was not affected. The diameter of 1/32 of
an inch for the diameter of the beam used for computation
falls within the size used in our experimental approach.
Furthermore reducing the incoming light to 1% of it is
original value by the use of a neutral filter did not affect
the transmittance. The data indicated in figures and
tables were collected without restriction on the incoming
light. Together, these data indicate that the beam
intensity chosen for the computational model corre-
sponded to the experimental approach.

Remark 2. We remark that, in the computations, the
refracted energy absorbed by the cells was assumed to
remain trapped within the cell. Certainly, some of the
absorbed energy by the cells is converted into heat. An
analysis of the thermal conversion process can be found
in Zohdi (2006). Another level of complexity involves
dispersion when light is transmitted through cells.
Dispersion is the decomposition of light into its
component wavelengths (or colours), which occurs
because the index of refraction of a transparent medium
is greater for light of shorter wavelengths. Accounting
for dispersive effects is quite complex since it leads to a
dramatic growth in the number of rays.

6. EXTENSIONS AND CONCLUDING REMARKS

In summary, the objective of this work was to develop a
simple computational framework, based on geometrical
optics methods, to rapidly determine the light scatter-
ing response of multiple red blood cells. Because the
wavelength of light (3.8X107"<A<7.2X10" " m) is
approximately an order of magnitude smaller than the
typical red blood cell scatterer (dz8><10_6 m), geo-
metric ray-tracing theory is applicable, and can be used
to rapidly ascertain the amount of propagating optical
energy, characterized by the Poynting vector, that
is reflected and absorbed by multiple cells. Three-
dimensional examples were given to illustrate the
technique, and the computational results match closely
with experiments performed on blood samples at the
red cell laboratory in CHORI.

We conclude by stressing a few points for possible
extensions. First, a more general way to characterize a
wider variety of RBC states, which are not necessarily
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Figure 5. A comparison between the computational predic-
tions and laboratory results for 710 and 420 nm light (four
trials each).

Table 2. Experimental results for the forward scatter of
L(T)/||1(0)]| for 420 nm light (four trials).

L(T)/ 1(T)/ L(T)/ L(T)/
IO)]]: IO)]]: IO)]]: IO)]]:

cells trialno.1 trial no. 2 trial no. 3  trial no. 4

1650  0.94720 0.93630 0.93690 0.94360
4090  0.84640 0.80800 0.83740 0.82970
6510  0.75980 0.75610 0.74840 0.78770
8100  0.67440 0.62520 0.70220 0.65750

Table 3. Experimental results for the forward scatter of
L(T)/|11(0)]| for 710 nm light (four trials).

L(T)/ L(T)/ IL(T)/ L(T)/
[ Z(0)]: [[Z(0)]: [[2(0)]|: [[£(0) ]l
cells trial no. 1  trial no. 2  trial no. 3  trial no. 4

1650 0.97390 0.96450 0.96700 0.96760
4090 0.88700 0.85700 0.88230 0.87580
6510  0.85700 0.86390 0.83370 0.86710
8100 0.75300 0.70050 0.77650 0.70900

always bi-concaval, can be achieved by modifying the
equation for a generalized ‘hyper’-ellipsoid:

F<1§f<|ac_ff()|>s1 " <|y_y0|)s2 + <|Z_Z0|>s3 —1,
A1 (p) T3

(6.1)

where the s’s are exponents. Values of s<1 produce
non-convex shapes, while s>2 values produce ‘block-
like’ shapes. Furthermore, we can introduce particulate
aspect ratio, defined by ARdzef(rl/rz) = (r,/r3), where
ro=r3, AR>1 for prolate geometries and AR <1 for
oblate shapes. To produce the shape of a typical RBC,
we introduce an extra term in the denominator of first
axes term:

e |$—$0|' S'+ |y — ol 52+ |2 — 2| 53:1’
7’1+cll(‘2 Ty 3

(6.2)
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where A= +/9? + 22 and ¢;>0 and ¢,>0. The effect of
the term, ¢;A? is to make the effective radius of the
ellipsoid in the z-direction grow as one moves away
from the origin. As before, the outward surface normals,
n, needed during the scattering calculations, are easy to
characterize by writing n=VF/||VF|| with respect to a
rotated frame that is aligned with the axes of symmetry
of the generalized cell.

Second, it is important to recognize that one can
describe the aggregate ray behaviour in a more detailed
manner via higher moment distributions of the individual
ray-fronts and their velocities. For example, consider any
quantity, @, with a distribution of values (Q;, i=1, 2, .

N, =rays) about an arbltrary reference Value denoted

Q*, as follows, M . dzf(z 1 (Qi— )7’/N), where

f
A% ZL_ @;/ N,. The various moments characterize the

distribution, for example: (i) M ? measures the first
deviation from the average, which equals zero; (ii) M 1Q’70
is the average; (iii) M. ZQ"*A is the standard deviation; (iv)
M ??'_A is the skewness; and (v) M fl_A is the kurtosis. The
higher moments, such as the skewness, measure the bias
or asymmetry of the distribution of data, while the
kurtosis measures the degree of peakedness of the
distribution of data around the average.

Finally, when more microstructural features are
considered, for example, topological and thermal
variables, parameter studies become quite involved.
In order to eliminate a trial and error approach to
determine the characteristics of the types of cells that
would be needed to achieve a certain level of scattering,
in Zohdi (in press), an automated computational
inverse solution technique has recently been developed
to ascertain scatterer combinations which deliver
prespecifed electromagnetic scattering, thermal
responses and radiative (infrared) emission, employing
genetic algorithms in combination with implicit stag-
gering solution schemes, based upon approaches found
in Zohdi (2002, 2003a,b, 2004a,b,c).

Generally, RBC behaviour under fluid shear stress
and response to osmolality changes is essential for
normal function and survival. The ability to predict
and measure shape and deformation of individual RBC
under fluid shear stress will improve diagnosis of RBC
disorders and impact new avenues to treatment. New
nano-technology approaches coupled with real time
computational analysis will make it feasible to generate
shape and deformability histograms in very small
volumes of blood. This line of research is currently
being pursued by the authors, in particular to help
detect blood disorders, which are characterized by the
deviation of the shape of cells from those of healthy ones
under standard test conditions. Such disorders, in
theory, could be detected by differences in their
scattering responses from that of healthy cells.

Red cell shape is essential for proper function in the
circulation. Changes in shape will lead to a decreased
red cell survival often accompanied by anaemia.
Genetic disorders of cytoskeletal proteins will lead to
red cell pathology including hereditary spherocytosis
and hereditary eliptocyosis (Eber & Lux (2004) and
Gallagher (2004a,b)). Changes in membrane and
cytosolic proteins may affect the state of hydration of
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the cell and thereby its morphology. Millions of humans
are affected by haemoglobinopathies such as Sickle cell
disease and Thalassemia (Forget & Cohen (2005) and
Steinberg et al. (2005)). The altered hemoglobin in
these disorders can lead to changes in red cell proper-
ties, including membrane damage. Any of these
conditions will result in an alteration of the scattering
properties of the population of red cells. It is hoped that
simple scatter measurements and fitting of the obtained
data to our simulation model will reveal altered
parameters of the red cell population related to red
cell pathology. We hypothesize that this approach may
be used as part of the diagnostic process or to evaluate
treatment. Changes in clinical care may show a trend to
normalization of red cell scatter characteristics, and
therefore an improvement of red cell properties.

APPENDIX A. GENERALIZED FRESNEL
RELATIONS

Following a generalization of the Fresnel relations for
unequal magnetic permeabilities in Zohdi (in press), we
consider a plane harmonic wave incident upon a plane
boundary separating two different optical materials,
which produces a reflected wave and a transmitted
(refracted) wave (figure 2). Two cases for the electric
field vector are considered: (i) electric field vectors that
are parallel (1) to the plane of incidence and (ii) electric
field vectors that are perpendicular (L) to the plane of
incidence. In either case, the tangential components of
the electric and magnetic fields are required to be
continuous across the interface. Consider case (i). We
have the following general vectorial representations:

E, = Ejcos(k-r—wt)e; and
H, = Hjcos(k-r—wt)e,, (A1)
where e; and e, are orthogonal to the propagation
direction characterized by k. By employing the law of
refraction (n;sin §;=n.sin 6;) we obtain the following
conditions relating the incident, reflected and trans-
mitted components of the electric field quantities

Eycos 0, — Ej,cos 0, = Ejcos 6, and

H+H , =H. (A2)
Since, for plane harmonic waves, the magnetic and
electric field amplitudes are related by H= E/vu, we
have

By + By, =— —En =4 ﬁEnt =
M Y

E A
e n; [Its ( 3)

7;>| 3

 def ~ def
where 4= p,/ui, 2= ny/n; and where v, v. and v, are

the values of the velocity in the incident, reflected and
transmitted directions.® By again employing the law of
refraction, we obtain the Fresnel reflection and
transmission coefficients, generalized for the case of

SThroughout the analysis we assume that 7> 1.
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unequal magnetic permeabilities

po P _ (n/fa)cos 6; —cos 6,
"By (A/fi)cos 6; + cos 6,
_ B 2 cos 0

b

By " cos 0, + (n/p)cos 6; (A4)

Following the same procedure for case (2), where the
components of E are perpendicular to the plane of
incidence, we have

E,. cosb—(n/i)cos b,
7"' =
Y E,,  cosb; + (n/i)cos 6,
- E; 2 cos 0;
L E,,  cosb +(n/i)cos b,

(A5)
Our primary interest is in the reflections. We define the

reflectances as

def o def o
R”—TH and RJ_—TJ_.

(A6)
Particularly convenient forms for the reflections are
(72 /@)cos 0; — (A% —sin26;) "/
(A2/@)cos b; + (7? —sin26,)"/?’
_cos 0, —(1/4) (2 —sin6;)"/?
 cos 6 + (1/a) (A2 —sin26,) "2

n=

(A7)
Thus, the total energy reflected can be characterized by

Rdéf EZZE%_IA-’_E‘E‘Y:I”r—i—]lr
B, B2 L

i

(A 8)

If the resultant plane of oscillation of the (polarized)
wave makes an angle of v; with the plane of incidence,
then

Ej; = Ecosy; and FE ;= Esinvy;, (A9)

and it follows from the previous definition of I that

Ij; = Lecos®y; and I,; = Lsiny;. (A 10)

Substituting these expression back into the expressions
for the reflectances yields

I I

R = %coszfyi + %singyi = R”COSQ'Yi + Rlsin27i.
i i

(A 11)

For natural or unpolarized light, the angle v; varies

rapidly in a random manner, as does the field
amplitude. Thus, since

1 . 1
<005271(t)>7' E) and <Sln27i(t)>7 =5 (A 12)
and therefore for natural light
I I
[lli = 51 and ]Li =2 (A 13)

2 )

and therefore

E? 2 1 E2N\? T
T |lx T T
rﬁ — ( ﬁ) — [H; and 7"%_ = ( ;-) — ]:.
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Thus, the total reflectance becomes

1 1
R:§(R|\+RL):§(T’ﬁ+T2¢)7 (A 15)
where 0<R<1. For the cases where sin6, =

(sin 6;/7) > 1, one may rewrite reflection relations as
(7?/fa)cos 0 — j(sin’6; — i*)'/>
(72 /@d)cos B; + j(sin26; — n?)1/?’
. o Cos 0, — (1/)j(sin’6; — i?)'/2
Y cos 0 + (1/)j(sin2e, —a2) T (A16)

where, j=v/—1, and in this complex case’

=

def def

RH = T'H’I_’” = 17 and RL :TLFL = 1, (A 17)

where 7 and 7| are complex conjugates. Thus, for angles
above the critical angle 6}, all of the energy is reflected.
Note that as 7 — 1 we have complete absorption, while as
n— o we have complete reflection. The total amount of
absorbed power by the particles is (1— R)I. Thermal
(infrared) coupling effects, which are outside of the scope
of this paper, have been accounted for in Zohdi (2006).
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